The Total Synthesis of myo-Inositol Phosphates via myo-Inositol Orthoformate

David C. Billington, ${ }^{a \cdot * *}$ Raymond Baker, ${ }^{a}$ Janusz J. Kulagowski, ${ }^{a}$ Ian M. Mawer, ${ }^{a}$ Joseph P. Vacca, ${ }^{\text {b;* }}$ S. Jane deSolms, ${ }^{\text {b }}$ and Joel R. Huff ${ }^{\boldsymbol{b}}$
${ }^{a}$ Merck Sharp \& Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM2O 2OR
${ }^{\text {b }}$ Merck Sharp \& Dohme Research Laboratories, West Point, Pennsy/vania, 19486, USA

Abstract

Novel selective alkylations of myo-inositol orthoformate (4) have been used to prepare a series of protected myo-inositol derivatives, (5a-e), (7), (10), (12), and (16). These intermediates have been used in efficient total syntheses of myo-inositol 2-phosphate, (9); myo-inositol 4-phosphate, (6); myo-inositol 1,3-bisphosphate, (18); and myo-inositol 1,3,4,5-tetrakisphosphate (14). This report represents the first total synthesis of the important natural metabolites (14) and (18) and significantly improved methods of preparation of (6) and (9).

The receptor controlled hydrolysis of phosphatidylinositol $\dagger 4,5-$ bisphosphate (PIP $_{2}$), leading to the formation of inositol $1,4,5$ trisphosphate ($1,4,5-\mathrm{IP}_{3}$) and diacylglycerol (DAG), is now firmly established as a fundamental mechanism for cellular signal transduction. ${ }^{1-5}$ A large number of neurotransmitters and hormones use this transduction/amplification mechanism to evoke responses in target cells. Both $1,4,5-\mathrm{IP}_{3}$ and DAG act as second messengers in the target cell, the former binding to specific receptors on the endoplasmic reticulum and releasing calcium from intracellular stores, and the latter binding to protein kinase C. 1,4,5-IP 3_{3} is metabolised by a series of specific dephosphorylations (see Figure) via inositol 1,4-bisphosphate (1,4-IP $)_{2}$) and inositol 4-phosphate (I-4-P) ${ }^{6}$ to inositol, which is used fo: the resynthesis of the inositol phospholipids. Evidence has recently been obtained for a second metabolic route from $1,4,5-\mathrm{IF}_{3}$ to inositol, via phosphorylation to inositol $1,3,4,5-$ tetrakisphosphate ($1,3,4,5-\mathrm{IP}_{4}$) and subsequent dephosphorylation via inositol 1,3,4-trisphosphate (1,3,4-IP ${ }_{3}$) and inositol 1,3or 3,4-bisphosphates ($1,3-\mathrm{IP}_{2}$ and $3,4-\mathrm{IP}_{2}$) to inositol. ${ }^{7}$ The tetrakisphosphate $1,3,4,5-\mathrm{IP}_{4}$ has also been shown to have an important role in regulating the influx of calcium into stimulated cells from the extracellular fluid. ${ }^{8}$

Many of the facets of this fundamental signalling system are unclear. and efficient syntheses of all of the naturally occurring inositol phosphates were required to allow detailed biochemical investigations to proceed. A classical solution to the problem of obtaining selectively protected inositols has been to make use of the three isomeric bis-acetals of inositol [Scheme 1, (1)-(3)], and the chemistry of the bis-acetals (1)-(3) has been widely explored. ${ }^{9}$ The free hydroxy groups in (1)-(3) may be selectively protected under carefully controlled conditions, ${ }^{10,11}$ and coupled with the selective hydrolysis of the less stable trans acetal linkage; ${ }^{12,13}$ this has led to their wide spread use in synthetic approaches to inositol polyphosphates. ${ }^{14}$ The parallel development of $\mathrm{P}^{\text {III }}$ based phosphorylation techniques ${ }^{15,16}$ has allowed the successful synthesis of many inositol polyphosphates, and a comprehensive review of this area has appeared. ${ }^{14}$

The key problems posed in the synthesis of the inositol phosphates are (1) the synthesis of a suitable selectively protected inositol derivative, (2) efficient phosphorylation in high yield, a particularly difficult problem where vicinal diols are involved due to steric crowding and the formation of cyclic

[^0]
phosphate by-products, (3) deprotection of phosphate and hydroxy functions without migration of phosphate substituents to adjacent hydroxy groups, a major problem when cis groups are present. We have previously reported the successful use of benzyl phosphate esters in conjunction with benzyl ethers, allowing a single hydrogenolysis to be used for complete deprotection without migration of phosphate groups. ${ }^{1,17-19}$ We have reported elsewhere ${ }^{20}$ full details of our studies on the polyphosphorylation of inositol derivatives, and our development of the use of the reaction of polyalkoxide anions with tetrabenzylpyrophosphate as a general approach. ${ }^{13,20}$ We concentrate in this paper on methodology for the synthesis of selectively protected inositols from inositol orthoformate (4) which together with our other studies provides all of the inositol phosphates identified in the crucial phosphatidylinositol secondary messenger pathway. A preliminary account of part of this work has appeared. ${ }^{18,19}$

$+$

Scheme 2.

Results and Discussion

Since each of the bis-acetals (1)-(3) (Scheme 1) contains the more stable cis-1,2-acetal plus one other trans acetal, these intermediates are not suitable for the preparation of inositol phosphates having 1,3 substituents by direct means. To overcome this problem, we examined the use of inositol orthoformate (4) (Scheme 2) whose synthesis and structural determination was recently reported. ${ }^{21}$ We were attracted to this intermediate since it provides simultaneous protection of the hydroxy groups at C-1, C-3 and C-5, and results in inversion of the normal axial/equatorial relationship of the remaining free hydroxy groups.

Initial attempts to introduce silyl protecting groups selectively into (4) met with failure, with only mixtures of isomeric mono- and bis-silyl ethers being isolated. ${ }^{21}$ In stark contrast, formation of the alkoxide of (4) with sodium hydride (NaH) in dimethylformamide (DMF), followed by alkylation with benzyl bromide resulted in the formation of the 4-monobenzyl ether (5a) in very high yield, together with a trace of the 4,6-dibenzyl ether. The very high regioselectivity of this alkylation, together with the high degree of monoalkylation are probably due to

Scheme 3.
internal co-ordination in an intermediate anion (Scheme 3). Similar selective alkylations were achieved with a series of alkylating agents, and with the phosphorylating agent tetrabenzyl pyrophosphate (TBPP). The intermediacy of a chelated anion is further indicated by the observation that changes in either counter ion or solvent lead to losses in selectivity. Subsequent treatment of (5a) with NaH in DMF followed by benzyl bromide (BnBr) gave a ca. 5:1 mixture of the 4,6 - and 2,4-dibenzyl ethers, together with some tribenzyl material. Direct treatment of (4) with NaH (2 equiv.) in DMF, followed by BnBr (2 equiv.) gave a similar mixture of $2,4-$ and $4,6-$ dibenzyl ethers, in somewhat lower yield.

The regiochemistry of these substituted compounds was readily deduced from their $360 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectra. The 2-benzyl and 4,6 -dibenzyl compounds, having a plane of symmetry through C-2 and C-5, display symmetric spectra ($1-\mathrm{H} \equiv 3-\mathrm{H}$, $4-\mathrm{H} \equiv 6-\mathrm{H}$) with 4 signals for the inositol ring protons. In contrast, the 4 -benzyl compound displays a dissymmetric spectrum with 6 individual signals for the inositol ring protons.

We have used these selective alkylations of inositol orthoformate to prepare a series of protected inositol derivatives, (5a-e), (7), (10), (12), and (16). Efficient phosphorylation and deprotection procedures have led to total synthesis of myo-inositol 2 -phosphate, 4-phosphate, 1,3-bisphosphate, and 1,3,4,5-tetrakisphosphate (9), (6), (18), and (14). Following our original communication a synthesis of the enantiomers of inositol 1,3,4,5-tetrakisphosphate which uses the orthoformate (4) as an intermediate has appeared. ${ }^{22}$
(\pm)-Inositol 4-Phosphate (6) (Scheme 4).-Direct phosphorylation of the mono anion of inositol orthoformate (generated in DMF using NaH) with tetrabenzyl pyrophosphate (TBPP) gave the 4 -dibenzylphosphate ($5 d$) in 72% isolated yield. Hydrogenolysis of the benzyl esters followed by treatment with aqueous TFA to remove the orthoformate protecting group gave (\pm)-inositol 4-phosphate (6), which was isolated as its biscyclohexylammonium salt, in quantitative yield. This route provides (\pm)-inositol 4-phosphate in only 2 steps and 72% overall yield from the orthoformate (4).

Inositol 2-Phosphate (9) (Scheme 5).-Treatment of inositol orthoformate with NaH (2 equiv.) in DMF, followed by alkylation with BnBr gave a $5: 1$ mixture of 2,4- and 4,6 -dibenzyl ethers together with some tribenzyl ether and some 4-monobenzyl ether. Chromatographic separation of the dibenzylated material, followed by recrystallisation from ethyl acetatehexane gave the pure 4,6-dibenzyl orthoformate (7) in 30% yield (not optimised). Phosphorylation using NaH and TBPP gave the fully protected 2-phosphate (8) in 72% yield. Deprotection by hydrogenolysis, followed by treatment with aqueous TFA to remove the orthoformate protecting group gave inositol 2-phosphate (9), isolated as its biscyclohexylammonium salt, in 97% yield. This new synthesis of inositol 2-phosphate provides material free from contamination by the 1-nhosnhate isomer in

(4)

(6)

Scheme 4. Reagents and conditions: i, NaH (1 equiv.), DMF, TBPP (1 equiv.), $25^{\circ} \mathrm{C}$; ii, $10 \% \mathrm{Pd}$ on C , $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ (80:20), H_{2} (50 p.s.i.); iii, TFA $-\mathrm{H}_{2} \mathrm{O}(80: 20), 25^{\circ} \mathrm{C}$

(15)

viii (16) $R^{\prime}=R^{2}=H, X=B n$ $\underset{i x}{ } \rightarrow$ (17) $R^{1}=\mathrm{PO}(\mathrm{OPh})_{2}, \mathrm{R}^{2}=\mathrm{H}, X=\mathrm{Bn}$
\rightarrow (18) $\quad R^{1}=\mathrm{PO}_{3} \mathrm{H}_{2}, R^{2}=X=H$

(11)

(12)

(13)
(14)

Scheme 6. Reagents and conditions: i, NaH (1 equiv.), DMF, allyl bromide (1 equiv.), $25^{\circ} \mathrm{C}$; ii, NaH (2.5 equiv.), $\mathrm{DMF}, \mathrm{BnBr}\left(2.5\right.$ equiv.), $25^{\circ} \mathrm{C}$; iii, (a) $90 \% \mathrm{EtOH}, \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$, diazabicyclo[2.2.0]octane, reflux; (b) $0.1 \mathrm{~m} \mathrm{HCl}-\mathrm{MeOH}$, reflux, 15 min ; iv, $\mathrm{NaH}, \mathrm{THF}$, tetrabenzyl pyrophosphate $\left\{\left[(\mathrm{BnO})_{2} \mathrm{PO}\right]_{2} \mathrm{O}\right\}$, catalytic imidazole or 18 -crown $-6,25^{\circ} \mathrm{C}$; v, $10 \% \mathrm{Pd}$ on $\mathrm{C}, \mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(80: 20), \mathrm{H}_{2},\left(50\right.$ p.s.i.), $25^{\circ} \mathrm{C}$; vi, NaH (3 equiv.), DMF, $\mathrm{BnBr}\left(4\right.$ equiv.), $25^{\circ} \mathrm{C}$; vii, $0.1 \mathrm{~m} \mathrm{HCl}-\mathrm{MeOH}$, reflux, 15 min ; viii, $(\mathrm{PhO})_{2} \mathrm{POCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, catalytic 4 -dimethylaminopyridine, $25^{\circ} \mathrm{C}$; ix, Li in THF-liquid $\mathrm{NH}_{3},-78^{\circ} \mathrm{C}$
under an atmosphere of nitrogen. All reactions were performed under dry nitrogen in glassware which had been dried at $180^{\circ} \mathrm{C}$ and 50 mmHg for 30 min and allowed to cool under dry nitrogen. Light petroleum refers to the fraction boiling in the range $60-80^{\circ} \mathrm{C}$. Solvents were removed under reduced pressure ($<10 \mathrm{mmHg}$) on a Buchi rotary evaporator at 30 $50^{\circ} \mathrm{C}$. Organic solutions were dried over anhydrous magnesium sulphate.
Yields refer to isolated yields of chromatographically (t.l.c. and h.p.l.c.) homogeneous materials.
myo-Inositol Orthoformate (4).-myo-Inositol orthoformate (4) was prepared from myo-inositol by a modification of the
method of Kishi et al., ${ }^{21}$ involving the use of DMF in place of dimethylsulphoxide. In our hands this led to a cleaner product, and gave more reproducible yields. The orthoformate was conveniently purified by column chromatography on silica gel with $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{3}(1: 4)$ as eluant, followed by recrystallization from $\mathrm{CH}_{3} \mathrm{OH}$, m.p. $300-302^{\circ} \mathrm{C}$.

4-(Dibenzyloxyphosphoryloxy)-myo-inositol Orthoformate (5d).-Sodium hydride (80% dispersion; $0.08 \mathrm{~g}, 2.6 \mathrm{mmol}$) was added in one portion to a stirred solution of myo-inositol orthoformate (4) ($0.5 \mathrm{~g}, 2.6 \mathrm{mmol}$) in anhydrous DMF (250 ml) under N_{2} at $25^{\circ} \mathrm{C}$. The solution was stirred for 10 min and then TBPP ($1.4 \mathrm{~g}, 2.6 \mathrm{mmol}$) was added in one portion and the
mixture was stirred for a further 48 h . The reaction was quenched with water (1 ml) and the solvent evaporated in vacuo ($<1 \mathrm{mmHg}$). The residual oil was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$, filtered, and evaporated under reduced pressure to a thick oil. Chromatography on silica gel with EtOAc as eluant gave the title compound (5 d) $(0.84 \mathrm{~g}, 72 \%)$ as a white solid m.p. $97-99^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 55.75; H, 5.15: Calc. for $\left.\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{9} \mathrm{P}: \mathrm{C}, 56.0 ; \mathrm{H}, 5.1\right) ; \delta_{\mathrm{H}} 3.93(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.05(1 \mathrm{H}, \mathrm{m})$, $4.14(1 \mathrm{H}, \mathrm{t}, J 2 \mathrm{~Hz}), 4.29(1 \mathrm{H}, \mathrm{m}), 4.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.94(1 \mathrm{H}$, complex m) $5.00-5.13(4 \mathrm{H}$, complex m), $5.40(1 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz})$ and $7.37(10 \mathrm{H}$, complex m$) ; m / z$ f.a.b. ${ }^{+} 451\left[(M+\mathrm{H})^{+}, 100 \%\right]$, 185 (25), and $91(90)$, f.a.b. $449(M-H)^{-} 359(100 \%), 277(30)$, and 183 (40).
(\pm) myo-Inositol 4-Phosphate (6).-A solution of the dibenzyl phosphate ($\mathbf{5 d}$) $(0.44 \mathrm{~g}, 0.97 \mathrm{mmol})$ in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(4: 1)$ $(250 \mathrm{ml})$ was hydrogenated at 50 p.s.i. H_{2} over $10 \% \mathrm{Pd} / \mathrm{C}$ $(0.25 \mathrm{~g})$ for 18 h . The catalyst was filtered off and the solvents removed under reduced pressure. The residue was taken up in TFA $-\mathrm{H}_{2} \mathrm{O}(4: 1)(50 \mathrm{ml})$ and allowed to stand for 4 h . The solvents were removed under reduced pressure and the residue in water (10 ml) passed through a column of Dowex 50W X-8 $(100 \mathrm{~mm} \times 20 \mathrm{~mm})$ in the protonated form. The eluate was treated with an excess of cyclohexylamine (CHA) (1 ml) and after being stirred for 1 h under N_{2} the solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{ml})$ and the aqueous solution freeze-dried to a white powder. Crystallization from aqueous acetone gave the title compound (6) as its biscyclohexylammonium salt (0.443 g 100%), m.p. 133- $134^{\circ} \mathrm{C}$ (Found: C, 46.85 ; H, 8.45; N, 6.0; Calc. for $\mathrm{C}_{18} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{P}: \mathrm{C}, 47.15 ; \mathrm{H}, 8.57 ; \mathrm{N}, 6.11$); $\delta_{\mathrm{H}}(360 \mathrm{MHz}$; $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.41(1 \mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz}), 3.55(1 \mathrm{H}$, dd, $J 9$ and 2.5 Hz$), 3.63$ $(1 \mathrm{H}, \mathrm{dd}, J 9$ and 2.5 Hz$), 3.70(1 \mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz}), 4.05(1 \mathrm{H}, \mathrm{m})$, and $4.11(1 \mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz}) ; m / z\left(\right.$ f.a.b. $\left.{ }^{+}\right) 360(M+\mathrm{CHA})^{+}$; f.a.b. ${ }^{-} 259$ $(M-H)^{-}$.

4,6-Di-O-benzyl-myo-inositol Orthoformate (7).-Sodium hydride (80% dispersion in oil; $1.35 \mathrm{~g}, 45 \mathrm{mmol}$) was added to a solution of the orthoformate (4) $(3.80 \mathrm{~g}, 20 \mathrm{mmol})$ in dry DMF $(100 \mathrm{ml})$ containing imidazole $(50 \mathrm{mg})$. The mixture was stirred at room temperature for 1 h , after which time benzyl bromide ($7.18 \mathrm{~g}, 42 \mathrm{mmol}$) was added. After being stirred for a further 1 h the mixture was quenched with saturated aqueous ammonium chloride (5 ml) and evaporated. The residue was partitioned between water (100 ml) and dichloromethane $(2 \times 100 \mathrm{ml})$, and the combined organic layers were washed with brine (50 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography, with gradient elution using ethyl acetate in hexane ($25-100 \%$), gave, in order of elution: the tribenzyl ether, and dibenzylated material (2.91 g), consisting of an approximately $5: 1$ mixture of 4,6- and 2,4-dibenzyl orthoformates, respectively. Recrystallisation from ethyl acetate-hexane gave the pure 4,6 -dibenzyl ether (7) $(1.96 \mathrm{~g}, 27 \%)$, m.p. $125^{\circ} \mathrm{C}$ (lit., $\left.{ }^{21} 124-125^{\circ} \mathrm{C}\right)$ (Found: C, 68.05; H, 6.0. Calc. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6}: \mathrm{C}, 68.10 ; \mathrm{H}, 5.99$); δ_{H} $\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 3.02(1 \mathrm{H}$, br d, $J 10.8 \mathrm{~Hz}$), $4.23(3 \mathrm{H}, \mathrm{m}), 4.37$ $(2 \mathrm{H}, \mathrm{t}, J 3.6 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{m}), 4.62(4 \mathrm{H}, \mathrm{AB}, J 11.7 \mathrm{~Hz}), 5.47$ ($1 \mathrm{H}, \mathrm{s}$) , and $7.28(10 \mathrm{H}, \mathrm{m}) ; m / z 371\left(M^{+}+1,29 \%\right), 279(19)$, 173 (20), 108 (10), and 91 (100).

[^1]with 35% ethyl acetate in hexane as eluant to afford, in order of elution: recovered alcohol (7) ($60 \mathrm{mg}, 17 \%$ recovery), and the desired phosphate (8) as a solid ($452 \mathrm{mg}, 72 \%$), m.p. $102-103{ }^{\circ} \mathrm{C}$ (from ethyl acetate-hexane). (Found: C, 66.5 ; $\mathrm{H}, 5.7$; $\mathrm{P}, 4.75$. Calc. for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{O}_{9} \mathrm{P}: \mathrm{C}, 66.66$; $\mathrm{H}, 5.59$; $\mathrm{P}, 4.91 \%$); $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 4.33(2 \mathrm{H}, \mathrm{m}), 4.38(2 \mathrm{H}, \mathrm{m})$, $4.41(1 \mathrm{H}, \mathrm{m}), 4.55(4 \mathrm{H}, \mathrm{AB}, J 11.5 \mathrm{~Hz}), 4.97(1 \mathrm{H}, \mathrm{d}, J \mathrm{CHN}$ $7.0 \mathrm{~Hz}), 5.08(4 \mathrm{H}, \mathrm{d}, J 7.9 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{d}, J 1.2 \mathrm{~Hz})$, and 7.28 ($2 \mathrm{H}, \mathrm{m}$); $m / z\left(\mathrm{f} . \mathrm{a} . \mathrm{b}^{-}\right.$) $551(16 \%), 275$ (20), 183 (100), and 91 (80).
myo-Inositol 2-Phosphate (9).-A solution of the dibenzyl phosphate (8) ($445 \mathrm{mg}, 0.71 \mathrm{mmol}$) in ethanol (35 ml) and water (7 ml) was shaken with palladium on carbon $(10 \% ; 175 \mathrm{mg}$) under an atmosphere of hydrogen at 50 p.s.i. for 4 h . The suspension was filtered, the filtrate evaporated, and the residue taken up in TFA- $\mathrm{H}_{2} \mathrm{O}(4: 1)(10 \mathrm{ml})$. After being stirred for 2.5 h , the solution was evaporated, water $(5 \mathrm{ml})$ added to the residue, and the resulting solution freeze-dried. The residue was once again redissolved in water, and passed through a short column of Dowex 50W X-8 resin, in the H^{+}form; an excess of cyclohexylamine was added to the eluant, and the mixture freeze-dried to give the title compound (9) as its biscyclohexylammonium salt ($318 \mathrm{mg}, 97 \%$), m.p. ${ }^{183-185}{ }^{\circ} \mathrm{C}$ (Found: C, 46.8; $\mathrm{H}, 8.35 ; \mathrm{N}, 5.95 ; \mathrm{P}, 6.4$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{P}: \mathrm{C}, 47.15$; $\mathrm{H}, 8.57 ; \mathrm{N}, 6.11 ; \mathrm{P}, 6.76)$; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right), 1.19(3 \mathrm{H}, \mathrm{m})$, $1.34(10 \mathrm{H}, \mathrm{m}), 1.65(3 \mathrm{H}, \mathrm{m}), 1.80(5 \mathrm{H}, \mathrm{m}), 1.98(5 \mathrm{H}, \mathrm{m}), 3.23$ $(2 \mathrm{H}, \mathrm{m}), 3.25(1 \mathrm{H}, \mathrm{t}, J 9.3 \mathrm{~Hz}), 3.47(2 \mathrm{H}, \mathrm{m}), 3.73(2 \mathrm{H}, \mathrm{t}, J$ 9.6 Hz) and $4.50(1 \mathrm{H}, \mathrm{dt}, J 7.2,2.5 \mathrm{~Hz}) ; m / z\left(\right.$ f.a.b. $\left.{ }^{-}\right) 259[(M-$ H) ${ }^{-}, 100 \%$], 113 (37), and 79 (36).
(\pm) 4-O-Allyl-myo-inositol Orthoformate $\quad(\mathbf{1 0}) \equiv(\mathbf{5 c})$-Sodium hydride (80% dispersion; $0.8 \mathrm{~g}, 26 \mathrm{mmol}$) was added in one portion to a stirred solution of the orthoformate (4) ($5 \mathrm{~g}, 26$ mmol) in anhydrous DMF (500 ml) under N_{2} at $25^{\circ} \mathrm{C} . \mathrm{H}_{2}$ Evolution had ceased after 10 min and allyl bromide ($3.0 \mathrm{ml}, 2.4$ $\mathrm{g}, 34 \mathrm{mmol}$) was added in one portion. The solution was stirred under N_{2} for 2 h at $25^{\circ} \mathrm{C}$, and then quenched with water (5 ml). The solvent was removed under reduced pressure (1 mmHg) and the residual paste was taken up in $\mathrm{CHCl}_{3}(500 \mathrm{ml})$ and filtered to remove NaBr . T.1.c. on silica (EtOAc-light petroleum, 3:1) showed a trace of the orthoformate (4) $R_{\mathrm{F}} 0.15$, the desired product $R_{\mathrm{F}} 0.35$ and a trace of bisallyl compounds $R_{\mathrm{F}} 0.53$. Flash chromatography on silica gel with EtOAc-light petroleum (3:1) as eluant gave the title compound (10) (4.8 g , 80%) as as thick oil; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.68(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz})$, $4.16(2 \mathrm{H}, \mathrm{m}), 4.22(1 \mathrm{H}, \mathrm{m}), 4.3(2 \mathrm{H}, \mathrm{m}), 4.38(1 \mathrm{H}, \mathrm{m}), 4.46(1 \mathrm{H}$, $\mathrm{m}), 5.28(2 \mathrm{H}, \mathrm{m}), 5.44(1 \mathrm{H}, \mathrm{s})$ and $5.90(1 \mathrm{H}, \mathrm{m}) ; m / z 231[(M+$ $\mathrm{H})^{+}, 100 \%$], $155(60), 113(60)$. [Found: $(M+\mathrm{H})^{+} 231.0085$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{6}$: 231.0868].
(\pm) 2,6-Di-O-benzyl-4-O-allyl-myo-inositol Orthoformate (11).-Sodium hydride (80% dispersion; $2.3 \mathrm{~g}, 83 \mathrm{mmol}$) was added in a single portion to a stirred solution of allyl orthoformate ($\mathbf{1 0}$) ($4.8 \mathrm{~g}, 20.7 \mathrm{mmol}$) in anhydrous DMF (250 ml) under N_{2} at $25^{\circ} \mathrm{C}$. The suspension was stirred for 20 min and then benzyl bromide ($14.2 \mathrm{~g}, 83 \mathrm{mmol}$) was added in one portion. The solution was stirred at $25^{\circ} \mathrm{C}$ for 18 h , and then quenched with water (5 ml). The solvent was removed in vacuo $(<1 \mathrm{mmHg})$ and the residue partitioned between CHCl_{3} $(500 \mathrm{ml})$ and water $(50 \mathrm{ml})$. The organic layer was separated, washed with water (50 ml) and brine (50 ml), dried and evaporated under reduced pressure to a thick oil. Chromatography on silica gel with EtOAc-light petroleum (1:2) as eluant gave the title compound (11) $(7.1 \mathrm{~g}, 86 \%)$ as a thick oil (homogeneous by t.l.c. and h.p.l.c.); $\delta_{\mathbf{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 4.0$ $(2 \mathrm{H}, \mathrm{m}), 4.28(2 \mathrm{H}, \mathrm{m}), 4.40(1 \mathrm{H}, \mathrm{m}), 4.54(2 \mathrm{H}, \mathrm{dd}, J 11$ and $41 \mathrm{~Hz}), 4.7(2 \mathrm{H}, \mathrm{s}), 5.20(2 \mathrm{H}, \mathrm{m}), 5.54(1 \mathrm{H}, \mathrm{s}), 5.84(1 \mathrm{H}, \mathrm{m})$, and $7.3(10 \mathrm{H}, \mathrm{m}) ; m / z 410\left(M^{+}, 10 \%\right), 253(8), 203(15), 131(10)$, and 91 (100). (Found: $M^{+} 410.1740$. Calc. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{6}: 410.172 \mathrm{~g}$).
(\pm) 2,6-Di-O-benzyl-myo-inositol (12).-Wilkinsons catalyst $(0.5 \mathrm{~g})$ and 1,4-diazabicyclo[2.2.2]octane (DABCO) $(0.2 \mathrm{~g})^{23}$ were added to a stirred solution of the dibenzyl orthoformate (11) ($7.1 \mathrm{~g}, 17 \mathrm{mmol}$) in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}, 9: 1(55 \mathrm{ml})$. The solution was boiled under reflux under N_{2} for 9 h when t.l.c. (EtOAclight petroleum, 2:3) showed complete conversion into the enol ether. The solution was cooled, filtered, and evaporated under reduced pressure. The residue was taken up in MeOH (700 ml) and $10 \mathrm{~m} \mathrm{HCl}(70 \mathrm{ml})$ was added. The solution was boiled under reflux for 20 min , cooled, and adjusted to pH 8 by the addition of ammonia solution ($d 0.88$). The solvents were removed under reduced pressure and the semi-solid residue extracted with hot EtOAc ($3 \times 500 \mathrm{ml}$). The solvent was evaporated under reduced pressure, and the residue recrystallized from $\mathrm{CHCl}_{3}-$ light petroleum to give the title compound (12) $(3.3 \mathrm{~g}, 53 \%)$, m.p. 119-120.5 ${ }^{\circ} \mathrm{C}$ (Found: C, 66.65 ; H, 6.75. Calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}$: C, $66.65 ; \mathrm{H}, 6.71) ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 3.45(1 \mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz}), 3.47$ $(1 \mathrm{H}, \mathrm{m}), 3.63(2 \mathrm{H}$, complex m$), 3.71(1 \mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{t}$, $J 2.5 \mathrm{~Hz}), 4.76(2 \mathrm{H}$, br multiplet $), 4.84(2 \mathrm{H}, \mathrm{q}, J 13 \mathrm{~Hz})$, and 7.36 $(10 \mathrm{H}, \mathrm{m}) ; m / z\left(\mathrm{f} . \mathrm{a} . \mathrm{b} .^{-}\right) 359\left[(M-\mathrm{H})^{-}, 100 \%\right.$], 297 (20), 269 (25), and 183 (25).
(\pm) 2,6-Di-O-benzyl-myo-inositol 1,3,4,5-Tetrakis(dibenzylphosphate) (13).-Sodium hydride (80% dispersion; 0.24 g , 8 mmol) was added in one portion to a stirred solution of dibenzylinositol ($\mathbf{1 2) (0 . 3 6 \mathrm { g } , 1 \mathrm { mmol }) \text { in anhydrous THF (} 7 0 \mathrm { ml } \text {) }) ~ (0)}$ under N_{2}. The solution was heated to $60^{\circ} \mathrm{C}$ and allowed to cool to $25^{\circ} \mathrm{C}$. TBPP ($3.26 \mathrm{~g}, 6 \mathrm{mmol}$) was added in a single portion, followed by imidazole (0.05 g), and the solution was stirred at $25^{\circ} \mathrm{C}$ for 18 h . The suspension was filtered and the filter cake washed with THF ($2 \times 25 \mathrm{ml}$). The filtrate was evaporated under reduced pressure and the residual oil chromatographed on silica gel, with EtOAc-light petroleum (3:2) as eluant to give the title compound (13) $(0.92 \mathrm{~g}, 66 \%)$ as a thick oil (homogenous by t.l.c. and h.p.l.c.); $\delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 4.06(1 \mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz})$, $4.22(1 \mathrm{H}, \mathrm{m}), 4.30(1 \mathrm{H}, \mathrm{m}), 4.44(1 \mathrm{H}, \mathrm{q}, J 9 \mathrm{~Hz}), 4.6-5.1(22 \mathrm{H}$, complex m), and $7.20(50 \mathrm{H}, \mathrm{m}) ; m / z$ (f.a.b. $\left.{ }^{+}\right) 1401\left[(M+\mathrm{H})^{+}\right.$, 100%], $1310\left[(M-91-H)^{+}, 95\right], 1218$ (20), 1172 (30), f.a.b. ${ }^{-} 1309\left[(M-91)^{-}, 100 \%\right], 1219(45)$, and $1130(20)$.
(\pm) myo-Inositol 1,3,4,5-Tetrakisphosphate (14).-The fully protected compound (13) ($0.15 \mathrm{~g}, 0.1 \mathrm{mmol}$) was dissolved in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(4: 1)(100 \mathrm{ml})$ and hydrogenated at 50 p.s.i. H_{2} over $10 \% \mathrm{Pd} / \mathrm{C}(0.1 \mathrm{~g})$ for 10 h . The catalyst was filtered off and the solution was evaporated under reduced pressure. The residue was taken up in water (10 ml) and passed through a column of Dowex 50 W X $-8(100 \mathrm{~mm} \times 20 \mathrm{~mm})$ in the H^{+}form. Excess CHA was added to the aqueous eluate, and the solution was stirred for 1 h under N_{2}. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{ml})$ and freeze dried to a fawn powder. Crystallisation from aqueous acetone gave the title compound (14) $(0.115 \mathrm{~g}, 88 \%)$ as its pentacyclohexylammonium salt, m.p. $175-177^{\circ} \mathrm{C}$ (Found: C, 43.65; H, 8.0; N, 7.35. Calc. for $\mathrm{C}_{42} \mathrm{H}_{94} \mathrm{~N}_{6} \mathrm{O}_{18} \mathrm{P}_{4}: \mathrm{C}, 43.45 ; \mathrm{H}, 8.10 ; \mathrm{N}, 7.03$); $\delta_{\mathrm{H}}(360 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.84(1 \mathrm{H}, \mathrm{t}, J 10 \mathrm{~Hz}), 3.93(1 \mathrm{H}, \mathrm{td}, J 10$ and 3 Hz$), 3.95$ $(1 \mathrm{H}, \mathrm{m}), 4.02(1 \mathrm{H}, \mathrm{td}, J 10$ and 3 Hz$), 4.31(1 \mathrm{H}, \mathrm{q}, J 10 \mathrm{~Hz})$, and $4.32(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{P}}\left(145.78 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} \mathrm{pH} 7.0 ;{ }^{1} \mathrm{H}\right.$ coupled); δ_{H} $1.54(\mathrm{~d}, J 9.28 \mathrm{~Hz}), 2.82(\mathrm{~d}, J 9.62 \mathrm{~Hz}), 2.90(\mathrm{~d}, J 7.27 \mathrm{~Hz})$, and $3.72(\mathrm{~d}, J 6.88 \mathrm{~Hz}) ; m / z\left(\right.$ f.a.b. $\left.{ }^{+}\right) 600\left[(M+\mathrm{CHA}+\mathrm{H})^{+}, 10 \%\right]$, 192 (10), and $100(100)$; f.a.b. ${ }^{-} 499\left[(M-H)^{-}, 100 \%\right] 401(10)$, 159 (15), and 79 (10).

2,4,6-Tri-O-benzyl-myo-inositol Orthoformate (15). -NaH (4 g of 80% dispersion; $4 \mathrm{~g}, 133 \mathrm{mmol}$) was added to a stirred solution of orthoformate (4) ($5 \mathrm{~g}, 26 \mathrm{mmol}$) in anhydrous DMF (250 ml) under N_{2} at $25^{\circ} \mathrm{C}$. The mixture was stirred for 20 min , after which benzyl bromide ($21.6 \mathrm{~g}, 130 \mathrm{mmol}$) was added to it and the suspension stirred at $25^{\circ} \mathrm{C}$ under N_{2} for 18 h . The
reaction was quenched by the addition of water $(10 \mathrm{ml})$ and the solvents were removed in vacuo ($<1 \mathrm{mmHg}$). The residue was partitioned between $\mathrm{CHCl}_{3}(300 \mathrm{ml})$ and water $(50 \mathrm{ml})$ and the CHCl_{3} solution was washed with brine $(50 \mathrm{ml})$, dried, and evaporated under reduced pressure to give a gum. Trituration under cold hexane converted this gum into a white solid, which was recrystallized from light petroleum to give the title compound (15) ($9.5 \mathrm{~g}, 79 \%$) as a white crystalline solid, m.p. $102-104{ }^{\circ} \mathrm{C}$ (Found: C, 73.05 ; H, 6.30. Calc. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{6}$: C, $73.02 ; \mathrm{H}, 6.13$); $\delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 4.04(1 \mathrm{H}, \mathrm{d}, J 1.4 \mathrm{~Hz})$, $4.28(2 \mathrm{H}, \mathrm{t}, J 2.5 \mathrm{~Hz}), 4.33(2 \mathrm{H}, \mathrm{t}, J 4 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{m}), 4.55$ $(6 \mathrm{H}, \mathrm{m}), 5.52(1 \mathrm{H}, \mathrm{d}, J 1.1 \mathrm{~Hz})$, and $7.28(15 \mathrm{H}$, complex m); m / z (f.a.b. ${ }^{+}$) $461\left[(M+\mathrm{H})^{+}, 100 \%\right]$, and $181(50)$;f.a.b. ${ }^{-} 459$ [($M-$ H) ${ }^{-}, 100 \%$], 305 (30), 199 (50), and 153 (20).

2,4,6-Tri-O-benzyl-myo-inositol (16).-10 $\mathbf{M ~ H C l}(5 \mathrm{ml})$ was added to a solution of the benzyl orthoformate (15) $(6 \mathrm{~g}, 13$ mmol) in $\mathrm{MeOH}(500 \mathrm{ml})$ and the mixture was boiled under reflux for 20 min . The solution was cooled to $25^{\circ} \mathrm{C}$, and adjusted to pH 8 with ammonia solution ($d 0.88$). The solvents were removed under reduced pressure, and the residue extracted into EtOAc $(2 \times 250 \mathrm{ml})$. The combined extracts were then filtered and evaporated under reduced pressure to leave a thick oil. This was dissolved in hot $\mathrm{Et}_{2} \mathrm{O}$ and induced to crystallize by the addition of light petroleum. Recrystallization from $\mathrm{Et}_{2} \mathrm{O}-$ light petroleum gave the title compound (16) $(5.1 \mathrm{~g}, 87 \%)$ as a white crystalline solid, m.p. $83-84.5^{\circ} \mathrm{C}$ (Found: C, $72.2 ; \mathrm{H}$, 6.65. Calc. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{6}$: C, 71.98; $\mathrm{H}, 6.71$); $\delta_{\mathrm{H}}(360 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right), 3.56(3 \mathrm{H}, \mathrm{m}), 3.66(2 \mathrm{H}, \mathrm{t}, J 9.3 \mathrm{~Hz}), 4.00(1 \mathrm{H}, \mathrm{t}, J 2.7$ $\mathrm{Hz}), 4.85(6 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$, and $7.33(15 \mathrm{H}$, complex m); m / z (f.a.b. ${ }^{+}$) $451\left[(M+\mathrm{H})^{+}, 5 \%\right], 181$ (20), and 91 (100); m / z (f.a.b. ${ }^{-}$) $449\left[(M-H)^{-}, 100 \%\right], 359(50)$, and 183 (60).

2,4,6-Tri-O-benzyl-myo-inositol 1,3-Bis(diphenylphosphate) (17).- 4-Dimethylaminopyridine (0.3 g) and triethylamine (12 ml , excess) were added to a stirred solution of tribenzylinositol (16) ($4 \mathrm{~g}, 8.8 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (300 ml) under N_{2} at $25^{\circ} \mathrm{C}$. The solution was stirred for 10 min , diphenyl chlorophosphate ($4.0 \mathrm{ml}, 19.3 \mathrm{mmol}$) was added, and the solution was then stirred for a further 5 h . The solvent was removed under reduced pressure, the residue partitioned between $\mathrm{Et}_{2} \mathrm{O}(800 \mathrm{ml})$ and water $(100 \mathrm{ml})$; the organic phase was then washed with water (50 ml) and brine (50 ml), dried, and evaporated under reduced pressure to an oil. This was dissolved in $\mathrm{Et}_{2} \mathrm{O}(400 \mathrm{ml})$ and light petroleum (400 ml) was added. The solution was evaporated to $c a .90 \%$ of the original volume without external heating at $c a .10 \mathrm{mmHg}$ at which point crystallization commenced. The cold solution was scratched vigorously for 10 min and the resulting solid filtered off to give the title compound (17) $(3.1 \mathrm{~g}, 38 \%)$ as a white crystalline solid, m.p. $109-110^{\circ} \mathrm{C}$ (Found: C, 66.65 ; H, 5.25. Calc. for $\mathrm{C}_{51} \mathrm{H}_{48} \mathrm{O}_{12} \mathrm{P}_{2}$: C, $66.95 ; \mathrm{H}, 5.29$); $\delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 3.61$ $(1 \mathrm{H}, \mathrm{dt}, J 11$ and 2.5 Hz$), 3.96(2 \mathrm{H}, \mathrm{t}, J 9.5 \mathrm{~Hz}), 4.49(2 \mathrm{H}, \mathrm{m})$, $4.62(1 \mathrm{H}, \mathrm{dt}, J 7.5$ and 2.5 Hz$), 4.72(6 \mathrm{H}, \mathrm{m})$, and $7.23(35 \mathrm{H}$, complex m); m / z (d.c.i.) $915\left(M^{+}, 60 \%\right.$), 341 (25), and 251 (100). After several days at $0^{\circ} \mathrm{C}$, the mother liquor deposited a white solid ($1.6 \mathrm{~g}, 20 \%$) which was composed of 53% of the 1,3 -isomer (17) and 47% the 1,5 -diphosphorylated material (17a). The isomers were separable by h.p.l.c. (μ-Porasil, Waters Associates, $3.9 \mathrm{~mm} \times 300 \mathrm{~mm}$ EtOAc-light petroleum, 1:3), which confirmed the isomeric purity of the first crop crystalline material as $>99.5 \%$.
myo-Inositol 1,3-Bisphosphate (18).-A solution of diphenyl phosphate (17) ($0.5 \mathrm{~g}, 0.54 \mathrm{mmol}$) in anhydrous THF (10 ml) was added dropwise to a stirred solution of lithium metal (ca. 5.0 mg) in liquid ammonia-THF (2:1) which was maintained at $-78^{\circ} \mathrm{C}$ under nitrogen. After $c a .8 \mathrm{ml}$ of solution had been
added the blue colour of the reaction mixture was discharged. A pellet of lithium metal ($c a .20 \mathrm{mg}$) was added to the reaction and, after being stirred for 5 min , more substrate was added dropwise to the blue solution until the colour was again discharged. This titration procedure ${ }^{24}$ was repeated until all the substrate had been added (40 min) and then a pellet of lithium metal ($c a$. 20 mg) was added to the reaction which was stirred for 15 min . Water (1.5 ml) was added to the blue solution and the ammonia was evaporated under a stream of N_{2} at $25^{\circ} \mathrm{C}$ overnight. The residue from the reaction was taken up in water (10 ml) and passed through a $20 \mathrm{~mm} \times 100 \mathrm{~mm}$ column of Amberlite IR 120 in the H^{+}form, eluting with water. The acidic eluate was treated with an excess of CHA (1.2 ml) and after being stirred for 1 h was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 50 \mathrm{ml})$ and freeze dried to a white powder. Recrystallization from aqueous acetone gave the title compound (18) as its tetracyclohexylammonium salt ($0.27 \mathrm{~g}, 66 \%$), m.p. $165-166^{\circ} \mathrm{C}$ (Found: C, $48.75 ; \mathrm{H}, 8.9 ; \mathrm{N}, 7.85$. Calc. for $\mathrm{C}_{30} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{P}_{2}$: C, $48.90 ; \mathrm{H}, 9.03 \mathrm{~N}, 7.60$); $\delta_{\mathrm{H}}(360$ $\left.\mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right), 3.4(1 \mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz}), 3.78(2 \mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz}), 3.96(2 \mathrm{H}$, dt, $J 9$ and 3 Hz), and $4.28(1 \mathrm{H}, \mathrm{t}, J 3 \mathrm{~Hz}) ; m / z$ (f.a.b. $\left.{ }^{+}\right) 440$ $\left[(M+\mathrm{CHA}+\mathrm{H})^{+}, 20 \%\right.$], and $100(100) ; m / z$ (f.a.b. ${ }^{-}$) 339 $\left[(M-\mathrm{H})^{-}, 100 \%\right] 241(20)$, and 159 (15).

References

1 Y. Nishizuka, Nature (London), 1984, 308, 693.
2 M. J. Berridge and R. F. Irvine, Nature (London), 1984, 312, 315.
3 R. Michell, Nature (London), 1986, 319, 176.
4 L. F. Rawls, Chem. Eng. News, 1987, 26.
5 J. Altman, Nature (London), 1988, 331, 119.

6 C. I. Ragan, K. J. Watling, N. S. Gee, S. Aspley, G. J. Jackson, G. G. Reid, R. Baker, D. C. Billington, R. J. Barnaby, and P. Leeson, Biochem. J., 1988, 249, 314.
7 C. W. Taylor, Trends Pharmacol. Sci., 1987, 8, 79.
8 R. F. Irvine and R. M. Moor, Biochem. J., 1986, 240, 917.
9 S. J. Angyl, M. E. Tate, and S. D. Gero, J. Chem. Soc. C, 1961, 4116.
10 P. J. Garegg, T. Iversen, R. Johansson, and B. Lindberg, Carbohydr. Res., 1984, 130, 322 and references therein.
11 S. Ozaki, Y. Kondo, H. Nakahira, S. Yamaoka, and Y. Watanabe, Tetratedron Lett., 1987, 28, 4691.
12 J. P. Vacca, S. J. de Solms, and J. R. Huff, J. Am. Chem. Soc., 1987, 109, 3478.
13 Y. Watanabe, H. Nakahira, M. Bunya, and S. Ozaki, Tetrahedron Lett., 1987, 28, 4179.
14 D. C. Billington, Chem. Soc. Rev., 1989, 18, 83.
15 M. R. Hamblin, B. V. L. Potter, and R. Gigg, J. Chem. Soc., Chem. Commип., 1987, 626.
16 K-L. Yu and B. Fraser-Reid, Tetratedron Lett., 1988, 29, 979.
17 D. C. Billington, R. Baker, J. J. Kulagowski, and I. M. Mawer, J. Chem. Soc., Chem. Commun., 1987, 314.
18 D. C. Billington and R. Baker, J. Chem. Soc., Chem. Commun., 1987, 1011.

19 S. J. de Solms, J. P. Vacca, and J. R. Huff, Tetrahedron Lett., 1987, 28, 4503.

20 J. P. Vacca, S. J. de Solms, J. R. Huff, D. C. Billington, R. Baker, J. J. Kulagowski, and I. M. Mawer, Tetrahedron, in the press.
21 H. W. Lee and Y. Kishi, J. Org. Chem., 1985, 50, 4402.
22 G. Baudin, B. I. Glanzer, K. S. Swaminathan, and A. Vasella, Helv. Chim. Acta, 1988, 71, 1367.
23 E. J. Corey and J. W. Suggs, J. Org. Chem., 1976, 38, 3224.
24 B. E. Maryanoff, A. B. Reitz, G. F. Tutwiler, S. J. Benkovic, P. A. Benkovic, and S. J. Pilkis, J. Am. Chem. Soc., 1984, 106, 7851.

Received 30th November 1988; Paper 8/04735I

[^0]: † Inositcl refers to the myo-inositol stereochemistry throughout.

[^1]: 4,6-Di-O-benzyl-myo-inositol 2-Dibenzylphosphate (8).Sodium hydride (80% dispersion in oil; $45 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added to a solution of the dibenzyl ether (7) ($360 \mathrm{mg}, 1 \mathrm{mmol}$) in dry THF (20 ml) containing a trace of imidazole, and the mixture heated under reflux for 0.5 h . When the mixture was cool, a solution of tetrabenzyl pyrophosphate $(592 \mathrm{mg}, 1.1$ mmol) in dry THF (4 ml) was added to it; it was then heated under reflux for a further 3.5 h . After this time, the mixture was allowed to cool and the solid removed by careful filtration. The filtrate was evaporated, and the residue subjected to m.p.l.c.

